Chapter 11: Wave properties

Knowledge organiser

Waves in air, fluids, and solids

Waves transfer energy from one place to another without transferring matter. Waves may be **transverse** or **longitudinal**.

For waves in water and air, it is the wave and not the substance that moves.

- When a light object is dropped into still water, it produces ripples (waves) on the water which spread out, but neither the object nor the water moves with the ripples.
- When you speak, your voice box vibrates, making sound waves travel through the air. The air itself does not travel away from your throat, otherwise a vacuum would be created.

Mechanical waves require a substance (a medium) to travel through.

Examples of mechanical waves include sound waves, water waves, waves on springs and ropes,

and seismic waves produced by earthquakes.

When waves travel through a substance, the particles in the substance **oscillate** (vibrate) and pass energy on to neighbouring particles.

Transverse waves

The oscillations of a transverse wave are *perpendicular* (at right angles) to the direction in which the waves transfer energy.

Ripples on the surface of water are an example of transverse waves.

absorption

Longitudinal waves

The oscillations of a longitudinal wave are *parallel* to the direction in which the waves transfer energy.

Longitudinal waves cause particles in a substance to be squashed closer together and pulled further apart, producing areas of **compression** and **rarefaction** in the substance.

Sound waves in air are an example of longitudinal waves.

Wave motion is described by a number of properties.

amplitude

compression

Property	Description	
amplitude A	litude <i>A</i> maximum displacement of a point on a wave from its undisturbed position	
frequency f	quency <i>f</i> number of waves passing a fixed point per second	
period T	iod T time taken for one complete wave to pass a fixed point	
wavelength λ	relength λ distance from one point on a wave to the equivalent point on the next wave	
wave speed v	distance travelled by each wave per second, and the speed at which energy is transferred by the wave	metres per second (m/s)

frequency

incidence

Properties of waves

- 2 draw a single arrow on the rays to show the direction the wave is travelling
- **3** draw a dotted line at right angles to the surface at the point of **incidence** (this line is normal to the surface)
- **4** label the normal, angle of incidence (*i*), and angle of reflection (*r*).

When reflection happens at a surface, the angle of incidence is always equal to the angle of reflection:

reflection

rarefaction

i = r

mechanical wave

oscillate

period

ray diagram

longitudinal

Reflection of waves

When waves arrive at the boundary between two different substances, one or more of the following things can happen:

Absorption – the energy of the waves is transferred to the energy stores of the substance they travel into (for example, when food is heated in a microwave)

Reflection - the waves bounce back

Refraction – the waves change speed and direction as they cross the boundary

Transmission – the waves carry on moving once they've crossed the boundary, but may be refracted

transmission transverse wavelength wave speed

Chapter 11: Wave properties

Retrieval questions

Learn the answers to the questions below then cover the answers column with a piece of paper and write as many as you can. Check and repeat.

P11 questions			Answers		
0	What is a transverse wave?	Put pa	oscillations/vibrations are perpendicular (at right angles) to the direction of energy transfer		
2	What is a longitudinal wave?	per here	oscillations/vibrations are parallel to the direction of energy transfer		
3	Give an example of a transverse wave.	Put	electromagnetic waves		
4	Give an example of a longitudinal wave.	paper	sound waves		
5	What is a compression?	here	area in longitudinal waves where the particles are squashed closer together		
6	What is a rarefaction?	Put paper	area in longitudinal waves where the particles are pulled further apart		
7	What is the amplitude of a wave?	here	maximum displacement of a point on the wave from its undisturbed position		
8	What is the wavelength of a wave?	Put pape	distance from a point on one wave to the equivalent point on the adjacent wave		
9	What is the frequency of a wave?	- here	number of waves passing a fixed point per second		
10	What unit is frequency measured in?	P	hertz (Hz)		
•	What property of a wave always stays the same when it travels from one medium to another?	ut paper he	frequency		
12	What rule do waves follow when they reflect off a surface?	ere P	angle of incidence = angle of reflection		
13	What happens when waves are transmitted at a boundary between two substances?	ut paper h	they carry on moving at a different speed		
14	What happens when waves are absorbed by a substance?	ere	energy of the wave is transferred to energy stores of the substance		