Chapter 8: Rates and equilibrium 1

Knowledge organiser

Rates of reaction

The **rate of a reaction** is how quickly the reactants turn into the products.

To calculate the rate of a reaction, you can measure:

how quickly a reactant is used up

mean rate of reaction = $\frac{quantity of reactant used}{quantity of reactant used}$ time taken

how quickly a product is produced.

mean rate of reaction = _____quantity of product formed time taken

For reactions that involve a gas, this can be done by measuring how the mass of the reaction changes or the volume of gas given off by the reaction.

Volume of gas produced

The reaction mixture is connected to a gas syringe or an upside down measuring cylinder. As the reaction proceeds the gas is collected.

The rate for the reaction is then:

> volume of gas produced rate = time taken

Volume is measured in cm³ and time in seconds, so the unit for rate is cm^3/s .

Mean rate between two points in time

To get the mean rate of reaction between two points in time:

Change in mass

The reaction mixture is placed on a mass balance. As the reaction proceeds and the gaseous product is given off, the mass of the flask will decrease.

The rate for the reaction is then:

The mass is measured in grams and time is measured in seconds. Therefore, the unit of rate is g/s.

Calculating rate from graphs (HT only)

The results from an experiment can be plotted on a graph.

- A steep gradient means a high rate of reaction the reaction happens quickly.
- A shallow gradient means a low rate of reaction the reaction happens slowly.

Mean rate at specific time

To obtain the rate at a specific time draw a tangent to the graph and calculate its gradient.

Collision theory

For a reaction to occur, the reactant particles need to collide. When the particles collide, they need to have enough energy to react or they will just bounce apart. This amount of energy is called the activation energy.

You can increase the rate of a reaction by:

- increasing the frequency of collisions
- increasing the energy of the particles when they collide.

Factors affecting rate of reaction

Condition that increases rate	How is this condition caused?	Why it has that effect
increasing the temperature	Heat the container in which the reaction is taking place.	 particles move faster, leading to more frequent collisions particles have more energy, so more collisions result in a reaction note that these are two <i>separate</i> effects
increasing the concentration of solutions	Use a solution with more solute in the same volume of solvent.	there are more reactant particles in the reaction mixture, so collisions become more frequent
increasing the pressure of gases	Increase the number of gas particles you have in the container or make the container smaller.	less space between particles means more frequent collisions
increasing the surface area of solids	Cut the solid into smaller pieces, or grind it to create a powder, increasing the surface area. Larger pieces decrease the surface area.	only reactant particles on the surface of a solid are able to collide and react; the greater the surface area the more reactant particles are exposed, leading to more frequent collisions

Catalysts

Some reactions have specific substances called catalysts that can be added to increase the rate. These substances are not used up in the reaction.

A catalyst provides a different reaction pathway that has a lower activation energy. As such, more particles will collide with enough energy to react, so more collisions result in a reaction.

Chapter 8: Rates and equilibrium 2

Knowledge organiser

Reaction conditions

The conditions of a reaction refer to the external environment of the reaction. When the reaction occurs in a closed system, you can change the conditions by:

- changing the concentration of one of the substances
- changing the temperature of the entire reaction vessel
- changing the pressure inside the vessel.

Le Châtelier's principle (HT only)

At equilibrium, the amount of reactants and products is constant. In order to change the amounts of reactant and product at equilibrium the *conditions* of the reaction must be changed. The closed system will then counteract the change by favouring either the forward reaction or the reverse reaction. This is known as **Le Châtelier's principle**.

For example, lowering the concentration of the product in the system causes the forward reaction to be **favoured** to increase the concentration of the product.

Changing concentrations (HT only)

Change	Effect	Explanation
decrease concentration of product	favours the forward reaction	opposes the change by making <i>less</i> reactant and <i>more</i> product
increase concentration of product	favours the reverse reaction	opposes the change by making <i>more</i> reactant and <i>less</i> product
decrease concentration of reactant	favours the reverse reaction	opposes the change by making <i>more</i> reactant and <i>less</i> product
increase concentration of reactant	favours the forward reaction	opposes the change by making <i>less</i> reactant and <i>more</i> product

Changing temperature (HT only)

Change	Effect	Explanation
increase temperature of surroundings	favours the endothermic reaction	opposes the change by decreasing the temperature of the surroundings
decrease temperature of surroundings	favours the exothermic reaction	opposes the change by increasing the temperature of the surroundings

Changing pressure (HT only)

Change	Effect	Explanation
increase the	favours the reaction that results	decreasing the number of molecules within the vessel opposes the
pressure	in fewer molecules	change because it decrease pressure
decrease the	favours the direction that results	increasing the number of molecules within the vessel opposes the
pressure	in more molecules	change because it increase pressure

Key terms

Make sure you can write a definition for these key terms.

activation energy	catalyst	collision	collision theory	closed system
conditions	dynamic equ	uilibrium	frequency of collision	gradient
Le Châtelier's princ	iple rate	of reaction	reversible reaction	tangent

Reversible reactions

In some reactions, the products can react to produce the original reactants. This is called a **reversible reaction**. When writing chemical equations for reversible reactions, use the ⇐ symbol.

In this reaction:

- A and B can react to form C and D – the forward reaction
- C and D can react to form A and B the reverse reaction.

The different directions of the reaction have opposite energy changes.

If the forward reaction is *endothermic*, the reverse reaction will be *exothermic*.

The same amount of energy is transferred in each direction.

How dynamic equilibrium is reached

Progress of reaction	start of reaction	middle
Amount of A + B	high	dec
Frequency of collisions A + B	high	dec
Rate of forward reaction	high	dec
	rate of reaction	
Amount of C + D	zero	inci
Frequency of collisions C + D	no collisions	incı
Rate of reverse reaction	zero	incı

Equilibrium

In a **closed system** no reactants or products can escape. If a reversible reaction is carried out in a closed system, it will eventually reach **dynamic equilibrium** – a point in time when the forward and reverse reactions have the same rate.

At dynamic equilibrium:

- the reactants are still turning into the products
- the products are still turning back into the reactants
- *the rates of* these two processes are *equal*, so overall the amount of reactants and products are constant.

Dynamic equilibrium

At dynamic equilibrium the amount of reactant and product are constant, but not necessarily equal.

You could have a mixture of reactants and products in a 50:50 ratio, in a 75:25 ratio, or in any ratio at all. The **conditions** of the reaction are what change that ratio.

of reaction	at dynamic equilibrium			
creasing	constant			
creasing	constant			
creasing	same as rate of reverse reaction			
forward reaction equilibrium is reached at this point reverse reaction				
time	constant			
licusiiig	CONSTANT			
creasing	constant			
creasing	same as rate of forward reaction			

Chapter 8: Rates and equilibrium

Retrieval questions

Learn the answers to the questions below then cover the answers column with a piece of paper and write as many as you can. Check and repeat.

C8 questions

Answers

1	What is the rate of a reaction?	Put	how quickly reactants are used up or products are produced
2	What is the equation for calculating the mean rate of reaction?	paper he	mean rate = $\frac{\text{change in quantity of product or reactant}}{\text{time taken}}$
3	What is the unit for rate of reaction in a reaction involving a change in mass?	re	g/s
4	What is the unit for rate of reaction in a reaction involving a change in volume?	Put pap	cm³/s
5	What is the activation energy?	er here	the minimum amount of energy colliding particles have to have before a reaction will take place
6	What effect does increasing concentration have on the rate of reaction?	Pu	increases
7	Why does increasing concentration have this effect?	t paper h	more reactant particles in the same volume lead to more frequent collisions
8	What effect does increasing pressure have on the rate of reaction?	nere	increases
9	Why does increasing pressure have this effect?	Put pa	less space between particles means more frequent collisions
10	What effect does increasing surface area have on the rate of reaction?	aper here	increases
	Why does increasing surface area have this effect?		more reactant particles are exposed and able to collide, leading to more frequent collisions
Ð	What effect does increasing temperature have on the rate of reaction?	Put pap	increases
B	Why does increasing temperature have this effect?	er here	particles move faster, leading to more frequent collisions – particles have the same activation energy, so more collisions result in a reaction
14	What is a catalyst?	Put pa	a substance that increases the rate of a reaction but is not used up in the reaction
₲	How do catalysts increase the rate of a reaction?	per here	lower the activation energy of the reaction, so more collisions result in a reaction
16	What is a reversible reaction?	Π	the reactants turn into products and the products turn into reactants
Ð	Which symbol shows a reversible reaction?	ut pape	$\stackrel{\leftarrow}{\rightarrow}$
18	What is dynamic equilibrium?	r here	the point in a reversible reaction when the rate of the forward and reverse reactions are the same
19	What are the three reaction conditions that can be changed?	Pu	concentration, temperature, pressure
20	What is Le Châtelier's principle?	it paper	the position of equilibrium will shift to oppose external changes
2	What is the effect of increasing the concentration of reactants on a reaction at dynamic equilibrium?	here	favours the forward reaction

What is the effect of increasing the concentration of reactants on a reaction at dynamic equilibrium?	- ar par
What is the effect of decreasing the concentration of products on a reaction at dynamic equilibrium?	
What is the effect of increasing pressure on a reaction at dynamic equilibrium?	
What is the effect of decreasing pressure on a reaction at dynamic equilibrium?	
What is the effect of increasing temperature on a reaction at dynamic equilibrium?	
What is the effect of decreasing temperature on a reaction at dynamic equilibrium?	

22

23

24

25

26

27

favours the forward reaction favours the forward reaction favours the reaction that leads to the fewest molecules favours the reaction that leads to the most molecules favours the endothermic reaction

favours the exothermic reaction