
Chapter 3: Organisation and the digestive system

Knowledge organiser

Digestive enzymes

Digestive enzymes convert food into small, soluble molecules that can then be absorbed into the bloodstream. For example, carbohydrases break down carbohydrates into simple sugars.

	Enzyme	Sites of production
→	amylase	salivary glands pancreas small intestine
	proteases	stomach pancreas small intestine
	lipases	pancreas small intestine

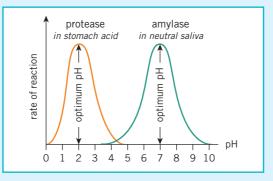

Enzymes

Enzymes are large proteins that catalyse (speed up) reactions. Enzymes are not changed in the reactions they catalyse.

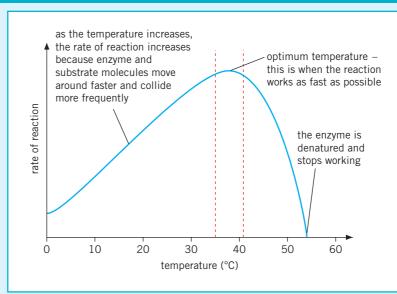
Lock and key theory

This is a simple model of how enzymes work:

- 1 The enzyme's active site (where the reaction occurs) is a specific shape.
- 2 The enzyme (the lock) will only catalyse a specific reaction because the **substrate** (the key) fits into its active site.
- **3** At the active site, enzymes can break molecules down into smaller ones or bind small molecules together to form larger ones.
- 4 When the products have been released, the enzyme's active site can accept another substrate molecule.

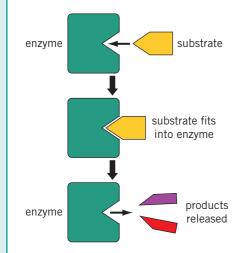

oesophagus

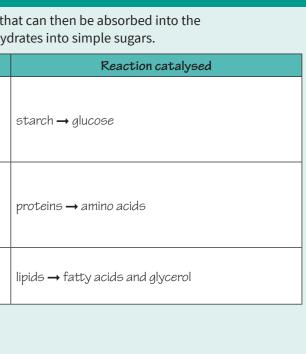
the stomach


carries food to

Different enzymes have different optimum pH values.

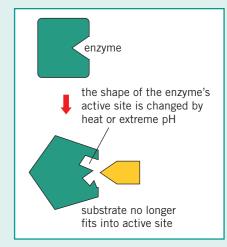
This allows enzymes to be adapted to work well in environments with different pH values. For example, parts of the digestive system greatly differ in pH.


The effect of temperature on enzymes



9 Key terms Make sure you can write a definition for these key terms. active site amylase catalyse denatured enzyme lipase

pН


optimu substrate temperature protease

Denaturation

At extremes of pH or at very high temperatures, the shape of an enzyme's active site can change.

The substrate can no longer bind to the active site, so the enzyme cannot catalyse the reaction

	- the enzyme has been denatured .				
um Sue	organ	organ system			

tiss

Chapter 3: Organisation and digestive system

Retrieval questions

Learn the answers to the questions below then cover the answers column with a piece of paper and write as many as you can. Check and repeat.

B3 questions			Answers		
1	Name the five levels of organisation.	Put	cells \rightarrow tissues \rightarrow organs \rightarrow organ systems \rightarrow organisms		
2	What is a tissue?	Put paper	group of cells with similar structures and functions		
3	What is an organ?	here	group of tissues working together to perform a specific function		
4	What is the function of the liver in digestion?	Put paper here	produces bile, which neutralises hydrochloric acid from the stomach and emulsifies fat to form small droplets with a large surface area		
5	What is the function of saliva in digestion?	r here	lubrication to help swallowing – contains amylase to break down starch		
6	Name three enzymes produced in the pancreas.	P	amylase, protease, lipase		
7	What are enzymes?	Put paper	protein molecules that catalyse specific reactions in organisms		
8	Why are enzymes described as specific?	here	each enzyme only catalyses a specific reaction, because the active site only fits together with certain substrates (like a lock and key)		
9	Describe the function of amylase.	Put pa	to break down starch into glucose		
10	Where is amylase produced?	^D ut paper here	salivary glands, pancreas, and small intestine		
❶	Describe the function of proteases.	re	to break down proteins into amino acids		
Ð	Where are proteases produced?	Put	stomach, pancreas, and small intestine		
13	Describe the function of lipases.	Put paper here	to break down lipids into fatty acids and glycerol		
14	Where are lipases produced?	here	pancreas and small intestine		
15	What are two factors that affect the rate of activity of an enzyme?	Put	temperature and pH		
16	What does denatured mean?	Put paper here	shape of an enzyme's active site is changed by high temperatures or an extreme pH, so it can no longer bind with the substrate		
Ð	Describe the effect of temperature on enzyme activity.	Put paper here	as temperature increases, rate of reaction increases until it reaches the optimum for enzyme activity – above this temperature enzyme activity decreases and eventually stops		
18	Describe the effect of pH on enzyme activity.	er here	different enzymes have a different optimum pH at which their activity is greatest – a pH much lower or higher than this enzyme activity decreases and stops		
Ð	Why do different digestive enzymes have different optimum pHs?	Put paper here	different parts of the digestive system have very different pHs – the stomach is strongly acidic, and the pH in the small intestine is close to neutral		
20	What is an organ system?	er here	a group of organs working together to perform a specific function		