Examination Style Questions: Coordinate Geometry

Question 1

The points A and B have coordinates (2, 3) and (6,-5) respectively.

- a) Find the distance between the points A and B giving your answer in the form $p\sqrt{q}$ where p and q are integers. (3 marks)
- b) Find the gradient of the line AB (2 marks)
- c) M is the midpoint of the line segment AB. Line I_1 is a line that goes through M and is perpendicular to the line segment AB.
 - (i) State the gradient of line I_1 . (1 mark)
 - (ii) Find an equation of I_1 giving your answer in the form ax + by + c = 0, where a, b and c are integers. (2 marks)

Question 2

The points P, Q and R have coordinates (1, -5), (6, 7) and (18, 2) respectively.

- a) Verify that both P and Q lie on the line 12x 5y 37 = 0. (2 marks)
- b) The line QR is perpendicular to the line PQ. (2 marks)
 - (i) Show that the gradient of QR is $\frac{-5}{12}$. (2 *marks*)
 - (ii) Find an equation of the line QR giving your answer in the form y = mx + c.

(2 marks)

(iii) Show that triangle PQR has area 84.5 units². (3 marks)

Question 3

The points A, B and C have coordinates (1, 6), (4, 15) and (-2, 7) respectively. Line I_1 joins the points A and B. The line I_2 is parallel to I_1 and goes through C.

- a) Find the gradient of the line I_1 . (2 marks)
- b) Find an equation of the line I_2 giving your answer in the form y = mx + c. (2 marks)
- c) Show that triangle CAB is a right angled triangle and find its area. (4 marks)

Examination Style Questions: Coordinate Geometry

Question 1

The points A and B have coordinates (2, 3) and (6,-5) respectively.

- d) Find the distance between the points A and B giving your answer in the form $p\sqrt{q}$ where (3 marks) p and q are integers.

e) Find the gradient of the line AB

- (2 marks)
- f) M is the midpoint of the line segment AB. Line I_1 is a line that goes through M and is perpendicular to the line segment AB.
 - (iii) State the gradient of line I_1 .

- (1 *mark*)
- (iv) Find an equation of I_1 giving your answer in the form ax + by + c = 0, where a, b and care integers. (2 marks)

Solution

a)
$$\sqrt{(6-2)^2 + (-5-3)^2} = 4\sqrt{5}$$

b)
$$\frac{-5-3}{6-2} = -2$$

c) I_1 has gradient $\frac{1}{2}$, and so equation of line is: $y-3=\frac{1}{2}(x-2)$ or x-2y+4=0

Question 2

The points P, Q and R have coordinates (1, -5), (6, 7) and (18, 2) respectively.

c) Verify that both P and Q lie on the line 12x - 5y - 37 = 0.

(2 marks)

d) The line QR is perpendicular to the line PQ.

(2 marks)

(iv) Show that the gradient of QR is $\frac{-5}{12}$.

- (2 marks)
- (v) Find an equation of the line QR giving your answer in the form y = mx + c.

(2 marks)

(vi) Show that triangle PQR has area 84.5 units².

(3 marks)

Solution

a) For P 12(1)-5(-5)-37=0 and so P lies on the line.

For Q 12(6)-5(7)-37=0 and so Q lines on the line.

b)

(i)
$$\frac{2-7}{18-6} = -\frac{5}{12}$$

Examination Style Questions: Coordinate Geometry

(ii)
$$y-7=\frac{-5}{12}(x-6)$$
 or $y=\frac{-5}{12}x+\frac{19}{2}$

(iii) PQ has length $\sqrt{(7-5)^2+(6-1)^2}=13$ and QR has length $\sqrt{(12-7)^2+(18-6)^2}=13$ and since PQ and QR are perpendicular then the triangle is right angled, hence area is $\frac{1}{2}\times13\times13=84.5$

Question 3

The points A, B and C have coordinates (1, 6), (4, 15) and (-2, 7) respectively. Line I_1 joins the points A and B. The line I_2 is parallel to I_1 and goes through C.

- d) Find the gradient of the line l_1 . (2 marks)
- e) Find an equation of the line I_2 giving your answer in the form y = mx + c. (2 marks)
- f) Show that triangle CAB is a right angled triangle and find its area. (4 marks)

Solution

a)
$$\frac{15-6}{4-1}=3$$

b)
$$y-7=3(x-2)$$
 or $y=3x+13$

c) AC has gradient $\frac{7-6}{-2-1} = -\frac{1}{3}$ and therefore since the product of the gradients of AB and AC is -1 the lines must be perpendicular and the triangle CAB is right angled. AC has length $\sqrt{(-2-1)^2+(7-6)^2} = \sqrt{10}$ and AB has length $\sqrt{(4-1)^2+(15-6)^2} = 3\sqrt{10}$ and the area of triangle CAB is $\frac{1}{2} \times \sqrt{10} \times 3\sqrt{10} = 15$ units².