Examination Style Questions: Coordinate Geometry

Question 1

The points A and B have coordinates $(2,3)$ and $(6,-5)$ respectively.
a) Find the distance between the points A and B giving your answer in the form $p \sqrt{q}$ where p and q are integers. (3 marks)
b) Find the gradient of the line $A B$ (2 marks)
c) M is the midpoint of the line segment $A B$. Line I_{1} is a line that goes through M and is perpendicular to the line segment $A B$.
(i) State the gradient of line I_{1}.
(ii) Find an equation of I_{1} giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
(2 marks)

Question 2

The points P, Q and R have coordinates $(1,-5),(6,7)$ and $(18,2)$ respectively.
a) Verify that both P and Q lie on the line $12 x-5 y-37=0$.
b) The line $Q R$ is perpendicular to the line $P Q$.
(i) Show that the gradient of QR is $\frac{-5}{12}$.
(2 marks)
(ii) Find an equation of the line QR giving your answer in the form $y=m x+c$.
(2 marks)
(iii) Show that triangle PQR has area 84.5 units ${ }^{2}$.

Question 3

The points A, B and C have coordinates $(1,6),(4,15)$ and $(-2,7)$ respectively. Line I_{1} joins the points A and B. The line I_{2} is parallel to I_{1} and goes through C.
a) Find the gradient of the line I_{1}.
b) Find an equation of the line I_{2} giving your answer in the form $y=m x+c$. (2 marks)
c) Show that triangle CAB is a right angled triangle and find its area.

Examination Style Questions: Coordinate Geometry

Question 1

The points A and B have coordinates $(2,3)$ and $(6,-5)$ respectively.
d) Find the distance between the points A and B giving your answer in the form $p \sqrt{q}$ where p and q are integers.
e) Find the gradient of the line $A B$
f) M is the midpoint of the line segment $A B$. Line I_{1} is a line that goes through M and is perpendicular to the line segment $A B$.
(iii) State the gradient of line I_{1}.
(1 mark)
(iv) Find an equation of I_{1} giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.

Solution

a) $\sqrt{(6-2)^{2}+(-5-3)^{2}}=4 \sqrt{5}$
b) $\frac{-5-3}{6-2}=-2$
c) I_{1} has gradient $\frac{1}{2}$, and so equation of line is: $y-3=\frac{1}{2}(x-2)$ or $x-2 y+4=0$

Question 2

The points P, Q and R have coordinates $(1,-5),(6,7)$ and $(18,2)$ respectively.
c) Verify that both P and Q lie on the line $12 x-5 y-37=0$.
d) The line $Q R$ is perpendicular to the line $P Q$.
(iv) Show that the gradient of QR is $\frac{-5}{12}$.
(v) Find an equation of the line QR giving your answer in the form $y=m x+c$.
(vi) Show that triangle PQR has area 84.5 units 2.

Solution

a) For P 12(1)-5(-5)-37 $=0$ and so P lies on the line.

For $Q 12(6)-5(7)-37=0$ and so Q lines on the line.
b)
(i) $\frac{2-7}{18-6}=-\frac{5}{12}$

Examination Style Questions: Coordinate Geometry

(ii) $y-7=\frac{-5}{12}(x-6)$ or $y=\frac{-5}{12} x+\frac{19}{2}$
(iii) $P Q$ has length $\sqrt{(7--5)^{2}+(6-1)^{2}}=13$ and $Q R$ has length $\sqrt{(12-7)^{2}+(18-6)^{2}}=13$ and since $P Q$ and $Q R$ are perpendicular then the triangle is right angled, hence area is $\frac{1}{2} \times 13 \times 13=84.5$

Question 3

The points A, B and C have coordinates (1,6), $(4,15)$ and $(-2,7)$ respectively. Line I_{1} joins the points A and B . The line I_{2} is parallel to I_{1} and goes through C .
d) Find the gradient of the line I_{1}.
e) Find an equation of the line I_{2} giving your answer in the form $y=m x+c$.
f) Show that triangle $C A B$ is a right angled triangle and find its area.

Solution

a) $\frac{15-6}{4-1}=3$
b) $y-7=3(x--2)$ or $y=3 x+13$
c) AC has gradient $\frac{7-6}{-2-1}=-\frac{1}{3}$ and therefore since the product of the gradients of $A B$ and $A C$ is -1 the lines must be perpendicular and the triangle $C A B$ is right angled. $A C$ has length $\sqrt{(-2-1)^{2}+(7-6)^{2}}=\sqrt{10}$ and $A B$ has length $\sqrt{(4-1)^{2}+(15-6)^{2}}=3 \sqrt{10}$ and the area of triangle $C A B$ is $\frac{1}{2} \times \sqrt{10} \times 3 \sqrt{10}=15$ units 2.

